Home
Class 14
MATHS
If x (3- 2/x) = 3/x , then the value of ...

If `x (3- 2/x) = 3/x` , then the value of `x^2 + 1/x^2` is

A

`2 (1)/(9)`

B

`2 (4)/(9)`

C

`3(1)/(9)`

D

`3 (4)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x(3 - \frac{2}{x}) = \frac{3}{x} \) and find the value of \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Simplify the equation Start with the given equation: \[ x(3 - \frac{2}{x}) = \frac{3}{x} \] Distributing \( x \) on the left side: \[ 3x - 2 = \frac{3}{x} \] ### Step 2: Eliminate the fraction Multiply both sides by \( x \) to eliminate the fraction: \[ x(3x - 2) = 3 \] This simplifies to: \[ 3x^2 - 2x - 3 = 0 \] ### Step 3: Solve the quadratic equation Now, we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 3 \), \( b = -2 \), and \( c = -3 \): \[ b^2 - 4ac = (-2)^2 - 4(3)(-3) = 4 + 36 = 40 \] Thus, the solutions for \( x \) are: \[ x = \frac{2 \pm \sqrt{40}}{6} = \frac{2 \pm 2\sqrt{10}}{6} = \frac{1 \pm \sqrt{10}}{3} \] ### Step 4: Find \( x + \frac{1}{x} \) To find \( x^2 + \frac{1}{x^2} \), we first need \( x + \frac{1}{x} \). We can compute \( \frac{1}{x} \) for both solutions: \[ x = \frac{1 + \sqrt{10}}{3} \implies \frac{1}{x} = \frac{3}{1 + \sqrt{10}} \cdot \frac{1 - \sqrt{10}}{1 - \sqrt{10}} = \frac{3(1 - \sqrt{10})}{-9} = \frac{-1 + \frac{\sqrt{10}}{3}}{3} \] Calculating \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = \frac{1 + \sqrt{10}}{3} + \frac{-1 + \sqrt{10}}{3} = \frac{2\sqrt{10}}{3} \] ### Step 5: Calculate \( x^2 + \frac{1}{x^2} \) Using the identity: \[ x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2 \] Substituting in the value we found: \[ x^2 + \frac{1}{x^2} = \left(\frac{2\sqrt{10}}{3}\right)^2 - 2 = \frac{40}{9} - 2 = \frac{40}{9} - \frac{18}{9} = \frac{22}{9} \] Thus, the final value of \( x^2 + \frac{1}{x^2} \) is: \[ \boxed{\frac{22}{9}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2 - 3x + 1 = 0 , then the value of (x^6 + x^4 + x^2 + 1)/(x^3) will be

If 2x + (2)/(x) = 3 then the value of x^(3) + (1)/(x^(3)) + 2 is

If (x+(1)/(x))=3, then the value of (x^(2)+(1)/(x^(2))) is: