Home
Class 14
MATHS
A, B and C are the three points on a cir...

A, B and C are the three points on a circle such that the angle subtendsed by the chords AB and AC at the centre O are `90^@` and `110^(@)` respectively. `angle BAC` is equal to

A

`70^(@)`

B

`80^(@)`

C

`90^(@)`

D

`100^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle \( \angle BAC \) given the angles subtended by the chords \( AB \) and \( AC \) at the center \( O \) of the circle. ### Step-by-Step Solution: 1. **Understand the Given Angles**: - The angle subtended by chord \( AB \) at the center \( O \) is \( 90^\circ \). - The angle subtended by chord \( AC \) at the center \( O \) is \( 110^\circ \). 2. **Identify the Angles at the Center**: - Let \( \angle AOB = 90^\circ \) (angle at center for chord \( AB \)). - Let \( \angle AOC = 110^\circ \) (angle at center for chord \( AC \)). 3. **Use the Properties of Angles in a Circle**: - The angle subtended at the circumference by a chord is half the angle subtended at the center by the same chord. Therefore: - \( \angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 90^\circ = 45^\circ \) - \( \angle ABC = \frac{1}{2} \angle AOC = \frac{1}{2} \times 110^\circ = 55^\circ \) 4. **Apply the Triangle Angle Sum Property**: - In triangle \( ABC \), the sum of angles is \( 180^\circ \): \[ \angle A + \angle B + \angle C = 180^\circ \] - Substituting the known angles: \[ \angle BAC + \angle ABC + \angle ACB = 180^\circ \] \[ \angle BAC + 55^\circ + 45^\circ = 180^\circ \] 5. **Calculate \( \angle BAC \)**: - Combine the known angles: \[ \angle BAC + 100^\circ = 180^\circ \] - Solve for \( \angle BAC \): \[ \angle BAC = 180^\circ - 100^\circ = 80^\circ \] ### Conclusion: The angle \( \angle BAC \) is \( 80^\circ \).
Promotional Banner

Similar Questions

Explore conceptually related problems

A, B and C are three points on a circle such that the angles subtended by the chords AB and AC at the centre O are 80^@ and 120^@ , respectively. The value of angle BAC is: A, B तथा C एक वृत्त पर स्थित तीन ऐसे बिंदु हैं कि जीवाओं AB तथा AC के द्वारा केंद्र पर अंतरित कोण क्रमशः 80^@ तथा 120^@ हैं | कोण BAC का मान क्या है ?

A, B and C are three points on a circle such that the angles subtended by the chords AB and AC at the centre O are 110°^(@) and 130^(@) respectively. Then the value of angleBAC is :

In Figure,A,B and C are three points on a circle such that the angles subtended by the chords AB and AC at the centere O are 90^(@) and 110^(0), respectively.Determine /_BAC .

A,B and C are three points on a circle such that the angles subtended by the chord AB and AC at the centre O are 110^@ and 130^@ respectively. Then the value of angle BAC is: A, B और C एक वृत्त पर स्थित तीन ऐसे बिंदु हैं कि जीवा AB और AC के द्वारा केंद्र O पर अंतरित किये गए कोण क्रमशः 110^@ तथा 130^@ हैं| angle BAC का मान है :

In Figure,A,B,C are three points on a circle such that the angles subtended by the chords AB and AC at the centre O are 80^(0) and 120^(@) respectively.Determine /_BAC and the degree measure of arc BPC