Home
Class 14
MATHS
The eliminant of theta from x cos theta...

The eliminant of `theta` from x cos `theta` - y sin `theta` = 2 , x sin `theta` + y cos `theta` = 4 will give

A

`x^2 + y^2 = 20`

B

`3x^2 + y^2 = 20`

C

`x^2 - y^2 = 20`

D

`x^2-y^2 =20`

Text Solution

AI Generated Solution

The correct Answer is:
To find the eliminant of \( \theta \) from the equations \( x \cos \theta - y \sin \theta = 2 \) and \( x \sin \theta + y \cos \theta = 4 \), we can follow these steps: ### Step 1: Square the first equation We start with the first equation: \[ x \cos \theta - y \sin \theta = 2 \] Squaring both sides gives: \[ (x \cos \theta - y \sin \theta)^2 = 2^2 \] Expanding the left side: \[ x^2 \cos^2 \theta - 2xy \cos \theta \sin \theta + y^2 \sin^2 \theta = 4 \] ### Step 2: Square the second equation Now take the second equation: \[ x \sin \theta + y \cos \theta = 4 \] Squaring both sides gives: \[ (x \sin \theta + y \cos \theta)^2 = 4^2 \] Expanding the left side: \[ x^2 \sin^2 \theta + 2xy \sin \theta \cos \theta + y^2 \cos^2 \theta = 16 \] ### Step 3: Add both squared equations Now we add the two squared equations: \[ (x^2 \cos^2 \theta - 2xy \cos \theta \sin \theta + y^2 \sin^2 \theta) + (x^2 \sin^2 \theta + 2xy \sin \theta \cos \theta + y^2 \cos^2 \theta) = 4 + 16 \] This simplifies to: \[ x^2 \cos^2 \theta + y^2 \cos^2 \theta + x^2 \sin^2 \theta + y^2 \sin^2 \theta = 20 \] ### Step 4: Use the Pythagorean identity Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ x^2 (\sin^2 \theta + \cos^2 \theta) + y^2 (\sin^2 \theta + \cos^2 \theta) = 20 \] This simplifies to: \[ x^2 + y^2 = 20 \] ### Conclusion The eliminant of \( \theta \) from the given equations is: \[ x^2 + y^2 = 20 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The elimination of theta from x cos theta+ysin theta=2 and xsin theta-y cos theta=4 will give: x cos theta-ysin theta=2 and xsin theta-y cos theta=4 से theta का निष्काषित करने पर क्या मिलेगा

Eliminate theta from x=a cos^(4)theta , y=b sin^(4)theta .

Eliminate theta from the following equation: x cos theta-y sin theta=a,x sin theta+y cos theta=b

Eliminate theta from x=a cos^(4)theta,y=b sin^(4)theta

Eliminate theta from the equation , a=x sin theta-y cos theta and b= x cos theta + y sin theta .

Eliminate theta from a sin theta + bcos theta = x "and" a cos theta -b sin theta = y

Eliminate theta from the following.cos ec theta-sin theta=a^(3),sec theta-cos theta=b^(3)

x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta

If (alpha,beta) is a point of intersection of the lines x cos theta+y sin theta=3 and x sin theta-y cos theta=4 where theta is parameter,then maximum value of 2(a+beta)/(sqrt(2)) is