Home
Class 14
MATHS
The value of (1001)^3 is...

The value of `(1001)^3` is

A

`1003003001`

B

`100303001`

C

`100300301`

D

103003001

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (1001)^3 \), we can use the algebraic identity for the cube of a sum, which is given by: \[ (a + b)^3 = a^3 + b^3 + 3ab(a + b) \] ### Step-by-Step Solution: 1. **Identify \( a \) and \( b \)**: Let \( a = 1000 \) and \( b = 1 \). Therefore, we can express \( 1001 \) as \( a + b \). 2. **Apply the formula**: Using the identity, we have: \[ (1001)^3 = (1000 + 1)^3 = 1000^3 + 1^3 + 3 \cdot 1000 \cdot 1 \cdot (1000 + 1) \] 3. **Calculate \( 1000^3 \)**: \[ 1000^3 = 1000 \times 1000 \times 1000 = 10^3 \times 10^3 \times 10^3 = 10^9 = 1000000000 \] 4. **Calculate \( 1^3 \)**: \[ 1^3 = 1 \] 5. **Calculate \( 3 \cdot 1000 \cdot 1 \cdot (1000 + 1) \)**: First, calculate \( (1000 + 1) \): \[ 1000 + 1 = 1001 \] Now calculate \( 3 \cdot 1000 \cdot 1 \cdot 1001 \): \[ 3 \cdot 1000 \cdot 1 \cdot 1001 = 3000 \cdot 1001 \] 6. **Calculate \( 3000 \cdot 1001 \)**: \[ 3000 \cdot 1001 = 3000 \cdot (1000 + 1) = 3000000 + 3000 = 3003000 \] 7. **Combine all the parts**: Now, we add all the calculated parts together: \[ (1001)^3 = 1000000000 + 1 + 3003000 \] \[ = 1000000000 + 3003001 = 1003003001 \] ### Final Answer: Thus, the value of \( (1001)^3 \) is \( 1003003001 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (1.001 xx 1.001 xx 1.001 +0.999 xx 0.999 xx 0.999)/(1.001 xx 1.001-1.001 xx 0.999 +0.999 xx 0.999) ?

What is the value of ((1001)_(2)^((11)_(2))-(101)_(2)^((11)_(2)))/((1001)_(2)^((10)_(2))+(1001)_(2)^((01)_(2))(101)_(2)^((01)_(2))+(101)_(2)^((10)_(2)))?

Let sin^(-1) x + sin^(-1) y + sin^(-1) z = (3pi)/2 for 0 le x, y, z le 1 .What is the value of x^(1000) + y^(1001) + z^(1002) ?

Let r,s and t be the roots of the equation, 8x^(3)+1001x+2008=0. The value of (r+s)^(3)+(s+t)^(3)+(t+r)^(3)is

If a polynomial function f satisfies the relation log_(2)(f(x))=log_(2)(2+(2)/(3)+(2)/(9)+......oo)*log_(3){1+(f(x))/(f((1)/(x)))} and f(10)=1001 ,then the value of f(20) is

tan^(-1)(1.001) Find the rapproximate value oftan- ^(-)(13001).

Let r,s, andt be the roots of equation 8x^(3)+1001x+2008=0. Then find the value of (r+s)^(3)+(s+t)^(3)+(t+r)^(3)