Home
Class 14
MATHS
if x sin ^2 60^@ -3/2 sec 60^@ tan ^2 30...

if `x sin ^2 60^@ -3/2 sec 60^@ tan ^2 30^@ + 4/5 sin ^2 45^@ tan^2 60^@` = 0 then x is

A

`-(1)/(15)`

B

`-4`

C

`-(4)/(15)`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ x \sin^2 60^\circ - \frac{3}{2} \sec 60^\circ \tan^2 30^\circ + \frac{4}{5} \sin^2 45^\circ \tan^2 60^\circ = 0, \] we will substitute the trigonometric values and simplify step by step. ### Step 1: Substitute the trigonometric values We know the following values: - \(\sin 60^\circ = \frac{\sqrt{3}}{2}\) - \(\sec 60^\circ = 2\) - \(\tan 30^\circ = \frac{1}{\sqrt{3}}\) - \(\sin 45^\circ = \frac{1}{\sqrt{2}}\) - \(\tan 60^\circ = \sqrt{3}\) Substituting these values into the equation gives: \[ x \left(\frac{\sqrt{3}}{2}\right)^2 - \frac{3}{2} \cdot 2 \cdot \left(\frac{1}{\sqrt{3}}\right)^2 + \frac{4}{5} \cdot \left(\frac{1}{\sqrt{2}}\right)^2 \cdot (\sqrt{3})^2 = 0. \] ### Step 2: Simplify each term Calculating each term: 1. \(\left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}\) 2. \(\left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3}\) 3. \(\left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2}\) 4. \((\sqrt{3})^2 = 3\) Now substituting these values back into the equation: \[ x \cdot \frac{3}{4} - \frac{3}{2} \cdot 2 \cdot \frac{1}{3} + \frac{4}{5} \cdot \frac{1}{2} \cdot 3 = 0. \] ### Step 3: Simplify further Now we simplify the equation: \[ x \cdot \frac{3}{4} - 1 + \frac{6}{5} = 0. \] ### Step 4: Combine like terms To combine the constants, we need a common denominator. The common denominator of 1 and 5 is 5: \[ x \cdot \frac{3}{4} - 1 + \frac{6}{5} = x \cdot \frac{3}{4} - \frac{5}{5} + \frac{6}{5} = x \cdot \frac{3}{4} + \frac{1}{5} = 0. \] ### Step 5: Isolate \(x\) Now we isolate \(x\): \[ x \cdot \frac{3}{4} = -\frac{1}{5}. \] ### Step 6: Solve for \(x\) Multiply both sides by \(\frac{4}{3}\): \[ x = -\frac{1}{5} \cdot \frac{4}{3} = -\frac{4}{15}. \] Thus, the value of \(x\) is \[ \boxed{-\frac{4}{15}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find x if x sin^2 60^@ -1/2 "sec"60^@ tan^2 30^@ + 4/3 "sin"^2 45^@ tan^2 60^@ = 0

sin^2 36^@+ tan^2 60^@+ sec^2 30^@ + sin^2 54^@ is equal to / sin^2 36^@+ tan^2 60^@+ sec^2 30^@ + sin^2 54^@ बराबर है

The numerical value of ( cos^2 45^@ ) /( sin ^2 60 ^@) +( cos ^2 60^@ )/( sin ^2 45 ^@ ) -(tan ^2 30 ^@ )/( cot^2 45^@ ) -( sin^2 30 ^@ )/( cot^2 30^@) is

What is the value of cosec^2 30^@+sin^2 45^@+ sec^2 60^@+tan^2 30^@ ? cosec^2 30^@+sin^2 45^@+ sec^2 60^@+tan^2 30^@ का मान क्या है?

The value of (cosec^2 30^@ sin^2 45^@ +sec^2 60^@)/(tan60^@ cosec^2 45^@- sec^2 60^@ tan45^@) is: (cosec^2 30^@ sin^2 45^@ +sec^2 60^@)/(tan60^@ cosec^2 45^@- sec^2 60^@ tan45^@) का मान है:

The value of (5cos^2 60^@+4sec^2 30^@-tan^2 45^@)/(tan^2 60^@- sin^2 30^@-cos^2 45^@) is: (5cos^2 60^@+4sec^2 30^@-tan^2 45^@)/(tan^2 60^@- sin^2 30^@-cos^2 45^@) का मान क्या होगा ?

Evaluate the following (i) sin 60^@ cos30^@ + sin 30^@ cos 60^@ (ii) 2tan^2 45^@ + cos^2 30^@ - sin^2 60^@ (iii) (cos45^@)/(sec30^@ + c o s e c 30^@) (iv) (sin30^@ + tan45^@ - c o s e c 60^@ )/(sec30^@ + cos60^@ +cot45^@) (v) (5cos^2 60^@ + 4sec^2 30^@ - tan^2 45^@ )/ (sin^2 30^@ + cos^2 30^@ )

Prove that : (4)/(3) tan ^(2) 30^(@) + sin ^(2) 60^(@) - 3 cos ^(2) 60^(@) + (3)/(4) tan^(2) 60^(@) - 2 tan^(2) 45^(@) = (25)/(36)

Evaluate : tan^2 30^@ sin^2 30^@ + cos 60^@ sin^2 90^@tan^2 60^@-2 tan 45^@ cos^2 0^@ sin 90^@