Home
Class 14
MATHS
The value of x which stasfies the equati...

The value of x which stasfies the equation ` 2 cosec^2 30^@ + x sin^2 60 ^@ - 3/4 tan ^2 30^@ = 10`

A

2

B

3

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \csc^2 30^\circ + x \sin^2 60^\circ - \frac{3}{4} \tan^2 30^\circ = 10 \), we will follow these steps: ### Step 1: Calculate \( \csc^2 30^\circ \) The cosecant function is the reciprocal of the sine function. We know that: \[ \sin 30^\circ = \frac{1}{2} \] Thus, \[ \csc 30^\circ = \frac{1}{\sin 30^\circ} = \frac{1}{\frac{1}{2}} = 2 \] Therefore, \[ \csc^2 30^\circ = 2^2 = 4 \] ### Step 2: Substitute \( \csc^2 30^\circ \) into the equation Now substituting \( \csc^2 30^\circ \) into the equation: \[ 2 \cdot 4 + x \sin^2 60^\circ - \frac{3}{4} \tan^2 30^\circ = 10 \] This simplifies to: \[ 8 + x \sin^2 60^\circ - \frac{3}{4} \tan^2 30^\circ = 10 \] ### Step 3: Calculate \( \sin^2 60^\circ \) We know that: \[ \sin 60^\circ = \frac{\sqrt{3}}{2} \] Thus, \[ \sin^2 60^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] ### Step 4: Calculate \( \tan^2 30^\circ \) We know that: \[ \tan 30^\circ = \frac{1}{\sqrt{3}} \] Thus, \[ \tan^2 30^\circ = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] ### Step 5: Substitute \( \sin^2 60^\circ \) and \( \tan^2 30^\circ \) into the equation Substituting these values into the equation gives: \[ 8 + x \cdot \frac{3}{4} - \frac{3}{4} \cdot \frac{1}{3} = 10 \] This simplifies to: \[ 8 + \frac{3x}{4} - \frac{1}{4} = 10 \] ### Step 6: Simplify the equation Combining the constants: \[ 8 - \frac{1}{4} = \frac{32}{4} - \frac{1}{4} = \frac{31}{4} \] So the equation now is: \[ \frac{31}{4} + \frac{3x}{4} = 10 \] ### Step 7: Eliminate the fraction Multiply the entire equation by 4 to eliminate the fraction: \[ 31 + 3x = 40 \] ### Step 8: Solve for \( x \) Now, isolate \( x \): \[ 3x = 40 - 31 \] \[ 3x = 9 \] \[ x = 3 \] ### Final Answer Thus, the value of \( x \) that satisfies the equation is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cos^2 30^@ + sin^2 60^@ + tan^2 45^@ + sec^2 60^@ + cos 0^@ is

Find x if x sin^2 60^@ -1/2 "sec"60^@ tan^2 30^@ + 4/3 "sin"^2 45^@ tan^2 60^@ = 0

if x sin ^2 60^@ -3/2 sec 60^@ tan ^2 30^@ + 4/5 sin ^2 45^@ tan^2 60^@ = 0 then x is

The numerical value of ( cos^2 45^@ ) /( sin ^2 60 ^@) +( cos ^2 60^@ )/( sin ^2 45 ^@ ) -(tan ^2 30 ^@ )/( cot^2 45^@ ) -( sin^2 30 ^@ )/( cot^2 30^@) is

The value of sin^2 42^@+ sin^2 48^@+ tan^2 60^@- cosec 30^@ is equal to : sin^2 42^@+ sin^2 48^@+ tan^2 60^@- cosec 30^@ का मान ज्ञात करें |

What is the value of cosec^2 30+ sin^2 45+sec^2 60+ tan^2 30 ? cosec^2 30+ sin^2 45+sec^2 60+ tan^2 30 का मान ज्ञात करें |

The value of sin^(2) 60^(@) + 2 tan 45^(@) - cos^(2) 30^(@) is :

The value of cot^2 62^@- sec^2 28^@+ cosec^2 30^@+ tan^2 60^@ is equal to: cot^2 62^@- sec^2 28^@+ cosec^2 30^@+ tan^2 60^@ का मान किसके बराबर है?