Home
Class 12
MATHS
If R=([1+((dy)/(dx))^2]^(3//2))/((d^2y)/...

If `R=([1+((dy)/(dx))^2]^(3//2))/((d^2y)/(dx2))` , then`R^(2//3)` can be put in the form of `1/(((d^2y)/(dx^2))^(2//3))+1/(((d^2x)/(dy^2))^(2//3))` b. `1/(((d^2y)/(dx^2))^(2//3))-1/(((d^2x)/(dy^2))^(2//3))` c. `2/(((d^2y)/(dx^2))^(2//3))+2/(((d^2x)/(dy^2))^(2//3))` d. `1/(((d^2y)/(dx^2))^(2//3))dot1/(((d^2x)/(dy^2))^(2//3))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

(d^(2)x)/(dy^(2)) equals: (1)((d^(2)y)/(dx^(2)))^(-1) (2) -((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3)(3)-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-2)(4)-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(3)

if (x-a)^(2)+(y-b)^(2)=c^(2) then (1+((dy)/(dx))^(2))/((d^(2)y)/(dx^(2)))=?

What is the degree of x((d^(2)y)/(dx^(2)))^(3)+y((dy)/(dx))^(4)+x^(3)=0 ?

Degree of DE: (d^(2)y)/(dx^(2))+[1+((dy)/(dx))^(2)]^(3/2)=0

The first integral of (dy)/(dx)((d^(2)y)/(dx^(2)))-x^(2)y((dy)/(dx))=xy^(2) will be

find the order and degree of D.E : (1) ((d^(2)y)/(dx^(2) ))^2 + ((dy)/(dx))^(3) = e^(x) (2) sqrt(1 + 1/((dy)/(dx))^(2))= ((d^(2)y)/(dx^(2)))^(3/2) (3) e^((dy)/(dx))+ (dy)/(dx) =x

Find the general solution of dy/dx*(d^3y)/(dx^3)=3((d^2y)/(dx^2))^2 .

(x^(2)d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(3) Find Degree.

The degree of (d^(2)y)/(dx^(2))+[1+((dy)/(dx))^(2)]^(3/2)=0 is