Home
Class 14
MATHS
If x^(4) + ((1)/(x^(4))) = 34 , what is...

If ` x^(4) + ((1)/(x^(4))) = 34` , what is the value of `x^(3) - ((1)/(x^(3))) ` ?

A

0

B

6

C

8

D

14

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ x^4 + \frac{1}{x^4} = 34 \] ### Step 1: Rewrite the equation using squares We can express \( x^4 + \frac{1}{x^4} \) in terms of \( x^2 + \frac{1}{x^2} \). We know that: \[ x^4 + \frac{1}{x^4} = \left( x^2 + \frac{1}{x^2} \right)^2 - 2 \] So, we can set up the equation: \[ \left( x^2 + \frac{1}{x^2} \right)^2 - 2 = 34 \] ### Step 2: Solve for \( x^2 + \frac{1}{x^2} \) Adding 2 to both sides gives: \[ \left( x^2 + \frac{1}{x^2} \right)^2 = 36 \] Taking the square root of both sides, we find: \[ x^2 + \frac{1}{x^2} = 6 \quad \text{or} \quad x^2 + \frac{1}{x^2} = -6 \quad \text{(not possible since both terms are positive)} \] Thus, we have: \[ x^2 + \frac{1}{x^2} = 6 \] ### Step 3: Find \( x - \frac{1}{x} \) Next, we can express \( x^2 + \frac{1}{x^2} \) in terms of \( x - \frac{1}{x} \): \[ x^2 + \frac{1}{x^2} = \left( x - \frac{1}{x} \right)^2 + 2 \] Let \( y = x - \frac{1}{x} \). Then we have: \[ y^2 + 2 = 6 \] Subtracting 2 from both sides gives: \[ y^2 = 4 \] Taking the square root of both sides, we find: \[ y = 2 \quad \text{or} \quad y = -2 \] Since we are looking for \( x - \frac{1}{x} \), we can take: \[ x - \frac{1}{x} = 2 \] ### Step 4: Find \( x^3 - \frac{1}{x^3} \) Now, we can use the identity for cubes: \[ x^3 - \frac{1}{x^3} = \left( x - \frac{1}{x} \right) \left( x^2 + 1 + \frac{1}{x^2} \right) \] We already know \( x - \frac{1}{x} = 2 \) and we can find \( x^2 + 1 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = 6 \implies x^2 + 1 + \frac{1}{x^2} = 6 + 1 = 7 \] Now substituting back: \[ x^3 - \frac{1}{x^3} = 2 \cdot 7 = 14 \] ### Final Answer Thus, the value of \( x^3 - \frac{1}{x^3} \) is: \[ \boxed{14} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(4) +(1)/(x^(4)) =119 and x gt 1 then what is the value of x^(3)-(1)/(x^(3)) ?

if x^(4)+(1)/(x^(4))=322 then find the value of x^(3)-(1)/(x^(3))

If x^(2)-4x +1=0 , then what is the value of x^(3)+(1)/(x^(3)) ?

If x^4 + (1)/(x^4) =727 , then find the value of x^3 - (1)/(x^3)

If x^(4)+(1)/(x^(4))=194 . Find the value of (x^(3)+(1)/(x^(3))) .

If x<0 and x^(4)+(1)/(x^(4))=47, then the value of x^(3)+(1)/(x^(3)) is