Home
Class 14
MATHS
If x = 1 - y and x^(2) = 2 - y^(2) , wh...

If x = 1 - y and `x^(2) = 2 - y^(2)` , what is the value of xy ?

A

1

B

2

C

`(-1)/(2)`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( x = 1 - y \) 2. \( x^2 = 2 - y^2 \) We need to find the value of \( xy \). ### Step 1: Substitute \( x \) in the second equation From the first equation, we can express \( x \) in terms of \( y \): \[ x = 1 - y \] Now, substitute this expression for \( x \) into the second equation: \[ (1 - y)^2 = 2 - y^2 \] ### Step 2: Expand the left side of the equation Expanding \( (1 - y)^2 \): \[ 1 - 2y + y^2 = 2 - y^2 \] ### Step 3: Rearrange the equation Now, rearranging the equation gives: \[ 1 - 2y + y^2 + y^2 - 2 = 0 \] \[ 2y^2 - 2y - 1 = 0 \] ### Step 4: Simplify the equation Dividing the entire equation by 2: \[ y^2 - y - \frac{1}{2} = 0 \] ### Step 5: Solve the quadratic equation We can use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = -1, c = -\frac{1}{2} \): \[ y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot -\frac{1}{2}}}{2 \cdot 1} \] \[ y = \frac{1 \pm \sqrt{1 + 2}}{2} \] \[ y = \frac{1 \pm \sqrt{3}}{2} \] ### Step 6: Find the corresponding values of \( x \) Using the values of \( y \) to find \( x \): 1. For \( y = \frac{1 + \sqrt{3}}{2} \): \[ x = 1 - y = 1 - \frac{1 + \sqrt{3}}{2} = \frac{1 - \sqrt{3}}{2} \] 2. For \( y = \frac{1 - \sqrt{3}}{2} \): \[ x = 1 - y = 1 - \frac{1 - \sqrt{3}}{2} = \frac{1 + \sqrt{3}}{2} \] ### Step 7: Calculate \( xy \) Now we calculate \( xy \) for both pairs of \( (x, y) \): 1. For \( x = \frac{1 - \sqrt{3}}{2} \) and \( y = \frac{1 + \sqrt{3}}{2} \): \[ xy = \left(\frac{1 - \sqrt{3}}{2}\right) \left(\frac{1 + \sqrt{3}}{2}\right) = \frac{(1 - \sqrt{3})(1 + \sqrt{3})}{4} = \frac{1 - 3}{4} = \frac{-2}{4} = -\frac{1}{2} \] 2. For \( x = \frac{1 + \sqrt{3}}{2} \) and \( y = \frac{1 - \sqrt{3}}{2} \): \[ xy = \left(\frac{1 + \sqrt{3}}{2}\right) \left(\frac{1 - \sqrt{3}}{2}\right) = \frac{(1 + \sqrt{3})(1 - \sqrt{3})}{4} = \frac{1 - 3}{4} = -\frac{1}{2} \] ### Final Answer Thus, in both cases, the value of \( xy \) is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(4) + x^(2) y^(2) + y^(4) = 91 and x^(2) - xy + y^(2) = 13 , then what is the value of | x-y|?

If (x + y) ^(2) = xy +1 and x ^(3) -y ^(3) = 1, what is the value of (x-y) ?

If x+y=25 and x^(2)y^(3)+y^(2)x^(3)=25 , what is the value of xy?

If x^(4)+x^(2)y^(2)+y^(4)=133 and x^(2)-xy+y^(2)=7, then what is the value of xy ?

If x^(4) +x^(2)y^(2)+y^(4)=21 , and x^(2)+xy+y^(2)=3 then what is the value of 4xy?

If xy = 6 and x ^(2) y + xy ^(2) + x + y = 63, then the value of x ^(2) + y ^(2) is

If xy = 6 and x^(2) y + xy^(2) + x+y =63 , then the value of x^(2) +y^(2) is