Home
Class 14
MATHS
If a-b=1 and ab=6 then what is the value...

If a-b=1 and ab=6 then what is the value of `(a^(3)-b^(3))?`

A

21

B

23

C

19

D

25

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we are given two equations: 1. \( a - b = 1 \) 2. \( ab = 6 \) We need to find the value of \( a^3 - b^3 \). ### Step 1: Use the identity for \( a^3 - b^3 \) The formula for the difference of cubes is: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] ### Step 2: Substitute \( a - b \) From the first equation, we know: \[ a - b = 1 \] Now we can substitute this into our formula: \[ a^3 - b^3 = 1 \cdot (a^2 + ab + b^2) = a^2 + ab + b^2 \] ### Step 3: Find \( a^2 + b^2 \) To find \( a^2 + b^2 \), we can use the identity: \[ a^2 + b^2 = (a - b)^2 + 2ab \] Substituting the known values: \[ a^2 + b^2 = (1)^2 + 2 \cdot 6 = 1 + 12 = 13 \] ### Step 4: Substitute \( a^2 + b^2 \) into the equation Now we can substitute \( a^2 + b^2 \) back into our expression for \( a^3 - b^3 \): \[ a^3 - b^3 = a^2 + ab + b^2 = (a^2 + b^2) + ab = 13 + 6 = 19 \] ### Final Answer Thus, the value of \( a^3 - b^3 \) is: \[ \boxed{19} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a-b=2 and ab=8 , then what is the value of a^3 - b^3 ?

If a+b+1=0 then what is the value of (a^(3)+b^(3)+1-3ab) ?

If a + b = 5 and ab = 6, then what is the vlaue of a ^(3) + b ^(3) ?

If a+b =8 and ab =15 , then what is the value of a^3 + b^3 ? (A) 98 (B) 152 (C ) 124 (D) 260

If a -b= 2 and ab = 15, then what is the value a^3 - b^3 ?

If a^(3)-b^(3) =91 and a-b =1 what is the value of (ab)

If a^(3) + b^(3) = 152 and a + b = 8 then what is the value of ab?