Home
Class 14
MATHS
If a=2b=8c and a+b+c=13,then the value o...

If a=2b=8c and a+b+c=13,then the value of `(sqrt(a^(2)+b^(2)+c^(2)))/(2c)` is:

A

`(9)/(2)`

B

`(5)/(6)`

C

`-(9)/(2)`

D

`-(5)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we start with the given equations: 1. **Given Relationships**: - \( a = 2b = 8c \) - \( a + b + c = 13 \) 2. **Express Variables in Terms of a Common Variable**: Let \( a = K \). Then from the relationships: - \( 2b = K \) implies \( b = \frac{K}{2} \) - \( 8c = K \) implies \( c = \frac{K}{8} \) 3. **Substitute into the Sum Equation**: Substitute \( a \), \( b \), and \( c \) into the equation \( a + b + c = 13 \): \[ K + \frac{K}{2} + \frac{K}{8} = 13 \] 4. **Find a Common Denominator**: The common denominator for the fractions is 8. Rewrite the equation: \[ \frac{8K}{8} + \frac{4K}{8} + \frac{K}{8} = 13 \] Combine the fractions: \[ \frac{8K + 4K + K}{8} = 13 \] This simplifies to: \[ \frac{13K}{8} = 13 \] 5. **Solve for K**: Multiply both sides by 8: \[ 13K = 104 \] Divide by 13: \[ K = 8 \] 6. **Find Values of a, b, and c**: Now substitute back to find \( a \), \( b \), and \( c \): - \( a = K = 8 \) - \( b = \frac{K}{2} = \frac{8}{2} = 4 \) - \( c = \frac{K}{8} = \frac{8}{8} = 1 \) 7. **Calculate \( \sqrt{a^2 + b^2 + c^2} \)**: Now we need to find \( \sqrt{a^2 + b^2 + c^2} \): \[ a^2 = 8^2 = 64, \quad b^2 = 4^2 = 16, \quad c^2 = 1^2 = 1 \] Therefore: \[ a^2 + b^2 + c^2 = 64 + 16 + 1 = 81 \] So: \[ \sqrt{a^2 + b^2 + c^2} = \sqrt{81} = 9 \] 8. **Calculate the Final Expression**: We need to find: \[ \frac{\sqrt{a^2 + b^2 + c^2}}{2c} \] Substitute \( c = 1 \): \[ \frac{9}{2 \cdot 1} = \frac{9}{2} \] Thus, the final answer is: \[ \frac{9}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a(a + b +c) =45, b(a +b+c)=75 and c (a +b+c) = 105 , then what is the value of (a^(2) + b^(2) + c^(2)) ?

If a = 2 , b = -2 and c = 2 , then find the value of a^2b + b^2c + c^2a