Home
Class 14
MATHS
The value of (cosecA+cotA+1) (cosec A-co...

The value of (cosecA+cotA+1) (cosec A-cot A+1) -2 cosec A is:

A

2

B

0

C

4 cosec A

D

2 cosecA

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\csc A + \cot A + 1)(\csc A - \cot A + 1) - 2 \csc A\), we will follow these steps: ### Step 1: Expand the expression We start by expanding the product \((\csc A + \cot A + 1)(\csc A - \cot A + 1)\). Using the distributive property (also known as the FOIL method for binomials): \[ (\csc A + \cot A + 1)(\csc A - \cot A + 1) = \csc A(\csc A - \cot A + 1) + \cot A(\csc A - \cot A + 1) + 1(\csc A - \cot A + 1) \] Calculating each term: 1. \(\csc A(\csc A) = \csc^2 A\) 2. \(\csc A(-\cot A) = -\csc A \cot A\) 3. \(\csc A(1) = \csc A\) So, the first part becomes: \[ \csc^2 A - \csc A \cot A + \csc A \] Now for the second part: 1. \(\cot A(\csc A) = \cot A \csc A\) 2. \(\cot A(-\cot A) = -\cot^2 A\) 3. \(\cot A(1) = \cot A\) So, the second part becomes: \[ \cot A \csc A - \cot^2 A + \cot A \] Finally, for the last part: \[ 1(\csc A - \cot A + 1) = \csc A - \cot A + 1 \] Combining all these results: \[ \csc^2 A - \csc A \cot A + \csc A + \cot A \csc A - \cot^2 A + \cot A + \csc A - \cot A + 1 \] ### Step 2: Combine like terms Now, we can combine all the terms: - The \(\csc A\) terms: \(2\csc A\) - The \(\cot A\) terms: \(-\cot^2 A + \cot A - \cot A = -\cot^2 A\) - The \(-\csc A \cot A\) and \(+\cot A \csc A\) cancel each other out. - The constant term is \(+1\). Thus, we have: \[ \csc^2 A - \cot^2 A + 2\csc A + 1 \] ### Step 3: Substitute back into the original expression Now, we need to subtract \(2 \csc A\) from this result: \[ (\csc^2 A - \cot^2 A + 2\csc A + 1) - 2\csc A \] This simplifies to: \[ \csc^2 A - \cot^2 A + 1 \] ### Step 4: Use the identity Recall the identity: \[ \csc^2 A - \cot^2 A = 1 \] Thus, we can substitute: \[ 1 + 1 = 2 \] ### Final Answer The value of the expression is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (cosecA + cotA +1)(cosecA - cotA + 1) - 2cosecA is: (cosecA + cotA +1)(cosecA - cotA + 1) - 2cosecA का मान है :

1/(cosecA+cotA)=cosecA-cotA

Prove that : cosec A- cot A =(1)/(cosecA+cotA)

(1)/(cosec A-cot A)+(1)/(cosec A+cot A)=?

The value of sqrt((cosec ∅- cot∅)/(cosec∅ + ccot ∅)) ÷ sin∅/(1 + cos ∅) is equal to: sqrt((cosec ∅- cot∅)/(cosec∅ + ccot ∅)) ÷ sin∅/(1 + cos ∅) का मान बराबर है :

What is the simplified value of ("cosec"^4 A - cot^2 A )-(cot^4 A+ "cosec"^2A) ?

The value of sqrt((cosec psi- cot psi)/(cosec psi+ cot psi)) div (sin psi) / (1+cos psi) is equal to : sqrt((cosec psi- cot psi)/(cosec psi+ cot psi)) div (sin psi) / (1+cos psi) का मान किसके बराबर है?

cot^(-1)("cosec x"+cotx)

csc x=1+cot x