Home
Class 12
MATHS
Evaluate lim(x-gt0) (tan(pisin^2 x)+(|x|...

Evaluate `lim_(x-gt0) (tan(pisin^2 x)+(|x|-sin(x[x]))^2)/x^2 ` , where `[*]=G.I.F` (A) `pi+1` (B) `pi` (C) `-1` (D) Does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(x rarr0)(tan(pi sin^(2)x)+(|x|-sin(x[x]))^(2))/(x^(2)) where [*]=G.I.F(A)pi+1(B)pi(C)-1 (D) Does not exist

Find lim_(x->0)(sin(pisin^2(x))/x^2)

The value of int_(-2)^2 (sin^2x)/([x/pi]+1/2) dx is where [*] =G.I.F (A) 1 (B) 0 (C) 2 (D) -1

lim_(x rarr((pi)/(2)))(1-sin x)tan x=

The value of int_(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx is where [*]=G.I.F(A)1(B)0(C)2(D)-1

lim_ (x rarr (pi) / (2)) {(1-sin x) tan x}

lim_(x rarr0)(tan( [pi]^(2)x^(2))-{tan( [-pi^(2)])}x^(2))/(sin^(2)x) where [.] is G. 1. F. (a) 1 (b) 2 (c) 3 (d) None

lim_(x->0)|x(x-1)|^[cos2x] ; where [.] is GIF is equal to : A.) 1 B.) 0 C.) e D.) does not exist

Show that Lim_(x to pi/2) tan x does not exist .

If x_1=2tan^(-1)((1+x)/(1-x)),x_2=sin^(-1)((1-x^2)/(1+x^2)) , where x in (0,1), then x_1+x_2 is equal to (a) 0 (b) 2pi (c) pi (d) none of these