Home
Class 12
MATHS
The line y=2t^2 meets the ellipse (x^2)/...

The line `y=2t^2` meets the ellipse `(x^2)/(9)+(y^2)/(4)=1` in real points if

Promotional Banner

Similar Questions

Explore conceptually related problems

The line y=2t^(2) intersects the ellipse (x^(2))/(9)+(y^(2))/(4)=1 in real points if

The line y=2t^2 intersects the ellipse x^2/9+y^2/4=1 in real points if :

The line x=t^2 meets the ellipse x^2+(y^2)/9=1 at real and distinct points if and only if. |t|<2 (b) |t|<1 |t|>1 (d) none of these

The straigth line y = 2t^(2) intesects the ellipse (x^(2))/(9)+(y^(2))/(4) = 1 at a real points if |t| le k then the value of k is _

The line x= t^(2) meet the ellipse x^(2) +(y^(2))/( 9) =1 in the real and distinct points if and only if

The line x=t meets the ellipse x^2+(y^2)/9=1 at real and distinct points if and only if. |t| 1 (d) none of these

The line x = at^(2) meets the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 in the real points iff