Home
Class 11
MATHS
lim(n rarr oo)1/(n^4)sum(r=1)^n r(r+2)(r...

`lim_(n rarr oo)1/(n^4)sum_(r=1)^n r(r+2)(r+4)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1)/(n^(4))sum_(r=1)^(n)r^(3)=

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

If f(x) is integrable over [1,], then int_(2)^(2)f(x)dx is equal to lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=n+1)^(2n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r+n)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)f((r)/(n))

lim_(n rarr oo) (1)/(n^(3)) sum_(r = 1)^(n) r^(2) is :

lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) equals

"lim_(n rarr oo)(1)/(n){sum_(r=1)^(n)e^((r)/(n))}=

lim_(x rarr oo) (1)/(n^(4)) sum_(r = 1)^(n) r^(3) is :

The value of lim_(n rarr oo)[{4sum_(r=0)^(n)(r+1)(r+2)(r+3)}^((1)/(4))-n] is