Home
Class 12
MATHS
log(log x)+(1)/(log x)...

log(log x)+(1)/(log x)

Promotional Banner

Similar Questions

Explore conceptually related problems

int(log(log x)+(log x)^(-1))dx=

Suppose x;y;z>0 and are not equal to 1 and log x+log y+log z=0. Find the value of x(1)/(log y)+(1)/(log z)xx y^((1)/(log z)+(1)/(log x))xx(1)/(log x)+(1)/(log y) (base 10)

Suppose x,y,z=0 and are not equal to 1 and log x+log y+log z=0. Find the value of (1)/(x^(log y))+(1)/(log z)quad (1)/(y^(log z))+(1)/(log x)quad (1)/(z^(log x))+(1)/(log y)

int((log x)^(2)-log x+1)/(((log x)^(2)+1)^((3)/(2)))dx

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

Suppose x,y,z>1 then least value of log(xyz)[(log x)/(log y log z)+(log y)/(log x log z)+(log z)/(log x log y)]

If x ^( log y) = log x, then prove that (dy)/(dx) = (y)/(x) ((1- log x log y)/( (log x) ^(2)))

(log x)/( (1 + log x)^(2))