Home
Class 12
MATHS
If xsqrt(1 + y) + ysqrt(1 + x) = 0 x != ...

If `xsqrt(1 + y) + ysqrt(1 + x) = 0 x != y` prove that `(dy)/(dx) = (-1)/((1 + x)^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt ( 1+ y) + y sqrt( 1+x) =0 , prove that (dy)/( dx) = - (1)/( (1+x)^2) .

If xsqrt(1 + y) + ysqrt(1 + x) = 0 show that (dy)/(dx) = - 1/(1 + x)^2

If x sqrt(1 + y) + ysqrt(1 + x)= 0 , for -1 lt x lt 1 , prove that (dy)/(dx) = - (-1)/((1 + x)^(2))

If xsqrt(1+y)+ysqrt(1+x)=0," for ", -1 lt x lt 1 , prove that (dy)/(dx)= -(1)/((1+x)^(2)) .

If xsqrt(1+y)+ysqrt(1+x)=0," for ", -1 lt x lt 1 , prove that (dy)/(dx)= -(1)/((1+x)^(2)) .

If xsqrt(1+y)+ysqrt(1+x)=0," for ", -1 lt x lt 1 , prove that (dy)/(dx)= -(1)/((1+x)^(2)) .

If xsqrt(1+y)+ysqrt(1+x)=0 for -1ltx,ylt1 then prove that (dy)/(dx)=(-1)/((x+1)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If xsqrt(1+y) + ysqrt(1+x) = 0 for x lies between -1 and 1 prove that dy/dx =-1/(1+x)^2