Home
Class 12
MATHS
If |z(1)|=|z(2)| and arg (z(1))+"arg"(z(...

If `|z_(1)|=|z_(2)|` and arg `(z_(1))+"arg"(z_(2))=0`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

z_(1) and z_(2) are two complex number such that |z_(1)|=|z_(2)| and arg (z_(1))+arg(z_(2))=pi , then show that z_(1)=-barz_(2)

If z_(1)andz_(2) are two complex numbers such that |z_(1)|=|z_(2)| and arg(z_(1))+arg(z_(2))=pi, then show that z_(1),=-(z)_(2)

|z_(1)|=|z_(2)|" and "arg z_(1)+argz_(2)=0 then

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find z_(1)+z_(2) .

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then z 1 ​ +z 2 ​ is equal to

z_(1) "the"z_(2) "are two complex numbers such that" |z_(1)| = |z_(2)| . "and" arg (z_(1)) + arg (z_(2) = pi," then show that "z_(1) = - barz_(2).

z_(1) "the"z_(2) "are two complex numbers such that" |z_(1)| = |z_(2)| . "and" arg (z_(1)) + arg (z_(2) = pi," then show that "z_(1) = - barz_(2).