Home
Class 12
MATHS
I=int(0)^(1)(sin^(-1)x)/(x)dx...

I=int_(0)^(1)(sin^(-1)x)/(x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Given I=int_(0)^( pi/2)(x)/(sin x)dx, quad J=int_(0)^(1)(tan^(-1)x)/(x)dx. Then value of (I)/(J) is:

If I_(1)=int_(0)^((pi)/(2))(x)/(sin x)dx and I_(2)=int_(0)^(1)(tan^(-1)x)/(x)dx, then (I_(1))/(I_(2))=(A)1(B)(1)/(2) (C) 2 (D) (pi)/(2)

Find the value of int_(0)^(1){(sin^(-1)x)/x}dx

Find the value of int_(0)^(1){(sin^(-1)x)//x}dx .

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then k=

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then the value of k is

Evaluate the following integrals (i) int_(0)^(1) sin^(-1)((2x)/(1+x^(2)))dx