Home
Class 12
MATHS
If x != 0, then tan((pi)/4 + 1/2 cos^(...

If `x != 0`, then
`tan((pi)/4 + 1/2 cos^(-1) x) + tan ((pi)/4 - 1/2 cos^(-1) x) = ......`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan((pi)/4+1/2"cos"^(-1)a/b)+tan((pi)/4-1/2"cos"^(-1)a/b)=

The expression tan.(pi/4+1/2cos^(-1)x)+tan(pi/4-1/2cos^(-1)x) equals

Prove that tan(pi/4 +1/2 cos^(-1) (a/b)) + tan^(-1) (pi/4 -1/2 cos^(-1) (a/b)) =2b/a

The value of tan (pi/4 + 1/2 cos^-1(2/3))+tan(pi/4 - 1/2 cos^-1 (2/3)) is

tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x) , x!=0 is equal to

tan((pi)/(4)+(1)/(2)cos^(-1)x)+tan((pi)/(4)-(1)/(2)cos^(-1)x),x!=0 is equal to

Prove that tan(pi/4+1/2cos^(-1)(a/b))+tan(pi/4-1/2cos^(-1)(a/b))=(2b)/a .

Prove that : "tan"(pi/4 +1/2 "cos"^(-1) a/b) +"tan"(pi/4 -1/2 "cos"^(-1) a/b) =(2b)/a

tan((pi)/(4) +(1)/(2)"cos"^(-1)(a)/(b))+ tan((pi)/(4) - (1)/(2)"cos"^(-1)(a)/(b)) is :