Home
Class 11
MATHS
If f(x)={x/(s in x),x >0 2-x ,xlt=0 and ...

If `f(x)={x/(s in x),x >0 2-x ,xlt=0` and `g(x)={x+3,x<1x^2-2x-2,1lt=x<2x-5,xgeq2` Then the value of `(lim)_(xvec0)g(f(x))` a. is -2 b. is -3 c. is 1 d. does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt1),(x^(2)-2x-2",",1lexlt2),(x-5",",xge2):} Then the value of lim_(xrarr0) g(f(x))

If f(x)=sgn(x)={(|x|)/(x),x!=0,0,x=0 and g(x)=f(f(x)) then at x=0,g(x) is

x2 +2, X22If f(x) = { 2x , xgt1 11-x, xlt2 and g(x) = 3-, X51' 1. evaluate lim f(g(x)).

If f(x)={x-1,xgeq1 2x^2-2,x 0-x^2+1,xlt=0,a n dh(x) =|x|,t h e n("lim")_(xvec0)f(g(h(x))) is___

Let f(x)={x+1,x>0 and 2-x,x<=0g(x)={x+3,x<1 and x^(2)-2x-2,1<=x<2 and x-5

a#b=(-1)^(ab)(a^(b)+b^(a)) f(x)=x^(2)-2x if x ge 0 =0if x lt0 g(x)=2x, if x ge0 =1, if x lt0 Find the value of f(g(2#3))+g(f(1#2)):

a#b=(-1)^(ab)(a^(b)+b^(a)) f(x)=x^(2)-2x if x ge 0 =0if x lt0 g(x)=2x, if x ge0 =1, if x lt0 Find the value of f(2#3)#g(3#4) :

Let f(x)={2x+a,x<=-1 and bx^(2)+3,x<-1 and g(x){x+4,0<=x<=4 and -3x-2,-2g(f(x)) is not defined if