Home
Class 11
MATHS
lim(x rarr oo)x{[Tan^(-1)x+1],[x+2]-Tan^...

lim_(x rarr oo)x{[Tan^(-1)x+1],[x+2]-Tan^(-1)x+2}=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)((x)/(x+2))]

Evaluate: lim_(n rarr oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)((x)/(x+2))]

The value of lim_(x rarr oo)(x+2)tan^(-1)(x+2)-(x tan^(-1)x) is

lim_(x rarr oo) tan(1/x)/(1/x)

The value of lim_(x rarr oo)(2x-3sin^(-1)x)/(3x+2tan^(-1)x) equal to

lim_(x rarr oo)tan^(-1)(x^(2)-x^(4))

lim_(x rarr oo)((x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1) is equal to

lim_(x rarr0)x((tan^(-1)((x+1)/(x+2))-tan^(-1)((x)/(x+2)))=

lim_ (x rarr oo) x {tan ^ (- 1) ((x + 1) / (x + 2)) - (pi) / (4)} =

The value of lim_(|x| rarr oo) cos (tan^(-1) (sin (tan^(-1) x))) is equal to