Home
Class 11
MATHS
The value of (lim)(xvecpi//4)(tan^3x-t a...

The value of `(lim)_(xvecpi//4)(tan^3x-t a n x)/(cos(x+pi/4))` is `8` b. `4` c. `-8` d. `-2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(x rarr(pi)/(3))(tan^(3)x-3tan x)/(cos(x+(pi)/(6)))is:

The value of lim_(x rarr(pi)/(3))((tan^(3)x-3*tan x)/(cos(x+(pi)/(6))))

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x-(5pi)/(4))) is equal to

lim_ (x rarr (pi) / (4)) (tan ^ (3) x-tan x) / (cos (x + (pi) / (4)))

the value of lim_(x rarr1)((tan(pi x))/(4))^((tan(pi x))/(2))

lim_(x rarr(pi)/(4))(cot^(3)x-tan x)/(cos(x+(pi)/(4))) is equal to (A) 8(B)

The value of lim_(x rarr(3 pi)/(4))(1+root(3)(tan x))/(1-2cos^(2)x) is -1/2 b.-2/3 c.-3/2d*-1/3

The value of (lim)_(x rarr0)(e^(x^(2))-e^(x)+x)/(1-cos2x) is a.1 b.2 c.4d.8

If alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4))) and beta = lim_(x rarr 0)(cos x)^(cot x) are the roots of the equation, a x^(2) + bx -4 = 0 , then the ordered pair (a, b) is :