Home
Class 12
MATHS
Function f(x) = (1-cos 4x)//(8x^(2)), " ...

Function `f(x) = (1-cos 4x)//(8x^(2)), " where " x != 0 ` , and f(x) = k, where x = 0 , is a continuous function at x = 0 Then : k =

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x) {((1 - cos 4x)/(8x^(2))",",x !=0),(" k,",x = 0):} is continuous at x = 0 then k = ?

f(x)= {((1- cos 4x)/(8x^(2))",",x ne 0),(k",",x= 0):} . If the function f(x) is continuous at x= 0, then find k.

If the function f defined on (-(1)/(3')(1)/(3)) by f(x)={{:((1)/(x)*log((1+3x)/(1-2x)) ",",where "," x!=0), (k, where "," x=0):} is continuous at x=0 then K=

If the function f(x) = {(1-cos x)/(x^(2)) for x ne 0 is k for x = 0 continuous at x = 0, then the value of k is

If the function f(x) = {((cosx)^(1/x), ",", x != 0),(k, ",", x = 0):} is continuous at x = 0, then the value of k is

The function f(x) = {{:(("sin x")/(x)+ cos x ,if x != 0),(k , if x = 0):} is continuous at x = 0 , then then value of 'k' is

For what value of k is the function f(x) = { k|x|/x, x =0 continuous at x = 0 ?

if f(x)=(sin^(-1)x)/(x),x!=0 and f(x)=k,x=0 function continuous at x=0 then k==

If the function f(x)={{:((sin x)/(x) + cos x", if " x ne 0 ), (k", if " x =0 ):} is continuous at x=0, then find the value of k.