Home
Class 11
MATHS
Iff(x)={x+1/2, x<0 2x+3/4,x >=0 ,...

If`f(x)={x+1/2, x<0 2x+3/4,x >=0` , then `[(lim)_(x->0)f(x)]=` (where [.] denotes the greatest integer function)

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(x+(1)/(2)",",xlt0),(2x+(3)/(4)",",xge0):},"then"[lim_(xrarr0) f(x)]="(where[.] denotes the greatest integer function)"

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=[|x|, then int_(0)^(100)f(x)dx is equal to (where I.] denotes the greatest integer function)

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

If (x)={g^(x),x =0f(x)={g^(x),x =0 where [.1) denotes the greatest integer function. The f(x)

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

The value of the lim_(x rarr0)(x)/(a)[(b)/(x)](a!=0)(where[*] denotes the greatest integer function) is

Let f(x)=["sinx"/x], x ne 0 , where [.] denotes the greatest integer function then lim_(xto0)f(x)