Home
Class 12
MATHS
In DeltaABC,a/cosA=b/cosB=c/cosC,ifb=2 t...

In `DeltaABC,a/cosA=b/cosB=c/cosC,ifb=2` then the area of the triangle is

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a DeltaABC , cosA+2cosB+cosC=2, then a,b,c are in

In /_\ABC ,a/cosA=b/cosB=c/cosC.Show that the triangle is equilateral.

If cosA/a=cosB/b=cosC/cand the side a=2, then area of triangle is

If in a triangle A B C ,cosA+2cosB+cosC=2 prove that the sides of the triangle are in AP

If in a triangle A B C ,cosA+2cosB+cosC=2 prove that the sides of the triangle are in AP

If in a triangle A B C ,cosA+2cosB+cosC=2 prove that the sides of the triangle are in AP

If in DeltaABC,(cosA)/(a)=(cosB)/(b)=(cosC)/(c) and side a=2, then the area of the triangle is

If in a Delta A B C ,(cosA)/a=(cosB)/b=(cosC)/c , then find the measures of angles A ,\ B ,\ Cdot

ln a DeltaABC , if (cosA)/a=(cosB)/b=(cosC)/c and the side a = 2, then area of the triangle is

ln a DeltaABC , if (cosA)/a=(cosB)/b=(cosC)/c and the side a = 2, then area of the triangle is