Home
Class 12
MATHS
Let u=int0^1("ln"(x+1))/(x^2+1)dxa n dv=...

Let `u=int_0^1("ln"(x+1))/(x^2+1)dxa n dv=int_0^(pi/2)ln(sin2x)dx ,t h e n` `u=-pi/2ln2` (b) `4u+v=0` `u+4v=0` (d) `u=pi/8ln2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let u=int_0^1("ln"(x+1))/(x^2+1)dx a n d v=int_0^(pi/2)ln(sin2x)dx ,t h e n (a) u=-pi/2ln2 (b) 4u+v=0 (c) u+4v=0 (d) u=pi/8ln2

Let u=int_(0)^(1)(ln(x+1))/(x^(2)+1)dx and v=int_(0)^((pi)/(2))ln(sin2x)dx, thenu=-(pi)/(2)ln2(b)4u+v=0u+4v=0 (d) u=(pi)/(8)ln2

int_(0)^((pi)/(2))log(sin2x)dx

int_0^(pi/2)sin2x log(tanx)dx

Evaluate : int_0^(pi/2) log sin x dx .

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

Show that int_(0)^(pi//2) log (sin x) dx = - pi/2 log 2

Show that int_(0)^((pi)/(2))log(sin2x)dx=-(pi)/(2)(log2)