Home
Class 12
MATHS
Show that the straight lines vec(r)=(5ha...

Show that the straight lines `vec(r)=(5hat(i)+7hat(j)-3hat(k))+s(4hat(i)+4hatj-5hat(k))andvec(r)=(8hat(i)+4hat(j)+5hat(k))+t(7hat(i)+hat(j)+hat(k))` are coplanar. Find the vector equation of the plane in which they lie.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between the lines vec(r)=(3hat(i)+hat(j)-4hat(k))+t(hat(i)+hat(j)+hat(k)) and vec(r)=(5hat(i)-hat(j))+t'(3hat(i)+2hat(j)+4hat(k))

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

The lines vec(r)=hat(i)+t(5hat(i)+2hat(j)+hat(k)) and vec(r)=hat(i)+s(-10hat(i)-4hat(j)-2hat(k)) are -

Show that the lines vec(r)=(hat(i)+hat(j)+hat(k))+t(hat(i)-hat(j)+hat(k)) and vec(r)=(3hat(i)-hat(k))+s(4hat(j)-16hat(k)) intersect and find the position vector of their point of intersection.

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

The point of intersection of the line vec(r)=7hat(i)+10hat(j)+13hat(k)+s(2hat(i)+3hat(j)+4hat(k)) and vec(r)=3hat(i)+5hat(j)+7hat(k)+t(hat(i)+2hat(j)+3hat(k)) is :

Find the angle between the pair of lines vec(r)=3hat(i)+5hat(j)-hat(k)+lambda(hat(i)+hat(j)+hat(k))" and "vec(r)=7hat(i)+4hat(k)+mu(2hat(i)+2hat(j)+2hat(k))

Find the shortest distance between the lines vec(r)=(4hat(i)-hat(j))+lamda(hat(i)+4hat(j)-3hat(k)) and vec(r)=(hat(i)-hat(j)+2hat(k))+mu(2hat(i)+3hat(j)-2hat(k))

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.