Home
Class 11
MATHS
lim x→(2^+) { x } sin( x−...

`lim x→(2^+) { x } sin( x−2 ) /( x−2)^2 =` (where [.] denotes the fractional part function) a. 0 b. 2 c. 1 d. does not exist

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve {x+1}-x^(2)+2x>0( where {.} denotes fractional part function)

undersetlim_(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes the fractional part function)

lim_(x rarr1)({x})^((1)/(n pi x)) ,where {.} denotes the fractional part function

If x in[2,3) ,then {x} equals, where {.} denotes fractional part function.

If f(x)-{x^(2)}-({x})^(2), where (x) denotes the fractional part of x, then

(lim)_(xvec-7)([x]^2+15[x]+56)/("sin"(x+7)"sin"(x+8))= (where [.] denotes the greatest integer function) a. is 0 b. is 1 c. is -1 d. does not exist

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where[dot] denotes the greatest integer function, is equal to 0 (b) 1 (c) -1 (d) does not exist