Home
Class 11
MATHS
The value of (lim)x->0(sqrt(1-cos"x"^2))...

The value of `(lim)x->0(sqrt(1-cos"x"^2))/(1-cosx)` is a.`1/2` b. 2 c. `sqrt(2)` d. none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) (sqrt(1-cosx^2))/(1-cosx) , is

The value of lim_(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

The value of lim_(x to 0) (sqrt(1/2(1-cos^(2)x)))/x is

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

lim_(x rarr0)(sqrt(1-cos2x))/(sqrt(2)x)

The value of (lim)_(x->0)(sqrt(2)-sqrt(1+cos x))/(sin^2x) is 1/(2sqrt(2)) b. 1/(8sqrt(2)) c. 1/(4sqrt(2))\ d. -1/(4sqrt(2))

The value of lim_(x to 0) (sqrt(x^2+1)-1)/(sqrt(x^2+16)-4) is

lim_(x to 0) (sqrt(1- cos 2x))/(sqrt2x) =

f(x)=|cos xx1 2sinxx^2 2xtanxx1| . Then value of (lim)_(xvec0)(f(x))/x is equal to 1 b. -1 c. zero d. none of these

The value of int_0^(pi//2)(sqrt(cosx))/(sqrt(cos x)+sqrt(s in x))dx is pi//2 b. pi//4 c. 0 d. none of these