Home
Class 12
MATHS
यदि a1, a2 ............., an धनात्मक वा...

यदि `a_1, a_2 ............., a_n` धनात्मक वास्तविक संख्याएँ हैं, जिनका गुणनफल एक निश्चित संख्या c है, तब ` a_1 + a_2 + ...... + a_(n-1) + 2a_n` का न्यूनतम मान है

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1, a_2 , ............, a_n are in A.P.with common difference d ne 0 , then [sin d] [sec a_1 sec a_2 + sec a_2sec a_3+............+ sec a_(n-1) sec a_n] is equal to :

If a_1, a_2,a_3,..........., a_n be an A.P. of non-zero terms, prove that : 1/(a_1 a_2)+1/(a_2 a_3)+ ............. + 1/(a_(n-1) a_n)= (n-1)/(a_1 a_n) .

If a_1, a_2 , ............, a_n are in A.P. and a_i >0 for all i , prove that : 1/(sqrt a_1+sqrt a_2)+1/(sqrt a_2+sqrt a_3)+.............+ 1/(sqrt (a_(n-1))+sqrt a_n)= (n-1)/(sqrt a_1+sqrt a_n) .

If a_1, a_2, a_3..... a_n in R^+ and a_1.a_2.a_3.........a_n = 1, then minimum value of (1+a_1 + a_1^2) (1 + a_2 + a_2^2)(1 + a_3 + a_3^2)........(1+ a_n + a_n^2) is equal to :-

If a_1. a_2 ....... a_n are positive and (n - 1) s = a_1 + a_2 +.....+a_n then prove that (a_1 + a_2 +....+a_n)^n ge (n^2 - n)^n (s - a_1) (s - a_2)........(s - a_n)

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If a_1,a_2,.....a_n are positive real number whose product is a fixed number c, then the minimum value of a_1+a_2+......+a_(n-1)+a_n is

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+.......a_(n-1)+2a_n is