Home
Class 12
MATHS
if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 ...

if `tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4` then x equals

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((2x-1)/(10))+tan^(-1 )(1/(2x))=(pi)/(4) , then x is equal to

5cos^(-1)((1-x^(2))/(1+x^(2)))+7sin^(-1)((2x)/(1+x^(2)))-4tan^(-1)((2x)/(1-x^(2)))-tan^(-1)x=5pi , then x is equal to

5cos^(-1)((1-x^(2))/(1+x^(2)))+7sin^(-1)((2x)/(1+x^(2)))-4tan^(-1)((2x)/(1-x^(2)))-tan^(-1)x=5pi , then x is equal to

The number of real solution of cot^(-1)sqrt(x(x+4))+cos^(-1)sqrt(x^(2)+4x+1)=(pi)/(2) is equal to

The number of real solution of cot^(-1)sqrt(x(x+4))+cos^(-1)sqrt(x^(2)+4x+1)=(pi)/(2) is equal to

The number of real solutions of tan^(-1)sqrt(x^(2)-3x+2)+cos^(-1)sqrt(4x-x^(2)-3)=pi is

The number of real solutions of tan^(-1)sqrt(x^(2)-3x+2)+cos^(-1)sqrt(4x-x^(2)-3)=pi is

if tan^(-1)x+ tan^(-1)y= (4 pi)/(5) then cot^(-1)x+ cot^(-1)y is equal to