Home
Class 11
MATHS
lim(x->(pi/2)) (1-sinx)tanx =...

`lim_(x->(pi/2)) (1-sinx)tanx` =

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

Evaluate the following limit (lim)_(x->pi/2)(sin x)^(tanx)

lim_(xrarr(pi)/(2)) ((1-sinx)(8x^(3)-pi^(3)))/(pi-2x)^(4)

The value lim_(xrarr pi//2)(sinx)^(tanx) , is

lim_(x rarr pi/2)(1-(sinx)^(sinx))/(cos^2x)=

lim_(x to pi/2)(1-sinx)/(cosx) is equal to :

lim _(xrarr(pi)/(2))(1-sinx)/cos^(2)x =_____

lim_(xto(pi)) (1-sin(x/2))/(cosx/2(cosx/4-sinx/4))

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)

Evaluate lim_(x to (pi)/(4)) (1 - tanx)/(x - (pi)/(4))