Home
Class 11
MATHS
(lim)(xvec0)[(sin^(-1)x)/(tan^(-1)x)]= (...

`(lim)_(xvec0)[(sin^(-1)x)/(tan^(-1)x)]=` (where [.] denotes the greatest integer function) a. 0 b. 1 c. -1 d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

(lim)_(xvec(-1^-)/3)1/x[(-1)/x]= (where [.] denotes the greatest integer function) a. -9 b. -12 c. -6 d. 0

lim_(x rarr0)[(99tan x sin x)/(x^(2))] = Where [.] denotes the greatest integer function

lim_(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest integer function)

lim_(x rarr1^(-1))([x])^(1-x) where [.] denotes greatest integer function

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

lim_(x rarr1)(x sin(x-[x]))/(x-1) ,where [.]denotes the greatest integer function, is

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to