Home
Class 10
MATHS
Calculate A+B when tan A=(2)/(3) and tan...

Calculate `A+B` when `tan A=(2)/(3)` and `tan B=(3)/(2)` if it is given that `tan(A+B)=(tan A+tan B)/(1-tan A tan B)` where `A` and `B` are acute angles.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=60⁰ and B=30⁰ , verify that tan (A+B)=(tan A+tan B)/(1-tan A tan B)

Prove that tan(A-B)=(tan A-tan B)/(1+tan A*tan B) , if A=60° & B=45°.

If A=60⁰ and B=30⁰ , verify that tan (A-B)=(tan A-tan B)/(1+tan A tan B)

Prove that in ABC,tan A+tan B+tan C>=3sqrt(3) where A,B,C are acute angles.

If tan A=(1)/(2) and tan B=(1)/(3), then tan(2A+B) is

Prove that tan(A+B)/cot(A-B)=(tan^2A-tan^2B)/(1-tan^2Atan^2B)

Prove that in Delta ABCtan A+tan B+tan C>=3sqrt(3); where A;B;C are acute angles.

(a) tan A+tan B+tan C=tan A tan B tan C

If A and B are acute angles such that tan A=(1)/(2),tan B=(1)/(3) and tan(A+B)=(tan A+tan B)/(1-tan A tan B), find A+B

In Delta ABC, prove that tan A+tan B+tan C>=3sqrt(3), where A,B,C are acute angles.