Home
Class 11
MATHS
L=lim(x->0) (sin(sinx)-sinx)/(ax^5+bx^3+...

`L=lim_(x->0) (sin(sinx)-sinx)/(ax^5+bx^3+c)=-(1/12)` The value/values of a is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

L=lim_(xrarr0) (sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) The value/values of b is

lim_(x to 0) (sin(sinx))/x

lim_(x rarr0)(sin(sin x)-sin x)/(ax^(3)+bx^(5)+c)=-(1)/(12) then

lim_(h rarr0)(sin(x+h)-sinx)/(h)

lim_(x to 0) (x^3 sin(1/x))/sinx

If lim_(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1 , then the value of ab is euqal to

Evaluate: lim_(xto0)(sinx-2sin3x+sin5x)/x

lim_ (x rarr0) (sin ax + bx) / (ax + sin bx)

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then the value of 1//(3L) is ________.

State whether the following statements are True of False. If L=lim_(xto0)(sinx-tan x)/(x^(3)), So the value of 2L is 1.