Home
Class 10
MATHS
2n^(2)+n-4=0...

2n^(2)+n-4=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation x^(2)-(1+n^(2))x+(1)/(2)(1+n^(2)+n^(4))=0 then alpha^(2)+beta^(2) is

If alpha,beta are the roots of the equation 2x^(2) - 2(1+n)^(2) x+(1 + n^(2)+ n^(4))=0 then what is the value of alpha^(2) + beta^(2) ?

If alpha, beta are the roots of the equation : 2x^2-2(1+n^2)x+(1+n^2+n^4)=0 , then what is the value of alpha^2 + beta^2 ?

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

Prove that ^nC_0 "^(2n)C_n-^nC_1 ^(2n-2)C_n +^nC_2 ^(2n-4)C_n =2^n