Home
Class 12
MATHS
int(dx)/(x sqrt(1-x^(3)))=a ln((sqrt(1-x...

int(dx)/(x sqrt(1-x^(3)))=a ln((sqrt(1-x^(3))+b)/(sqrt(1-x^(3))+1))+k

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(1)/(xsqrt(1-x^(3)))dx=alog|(sqrt(1-x^(3))-1)/(sqrt(1-x^(3))+1)|+c , then ' a' is equal to

If (1)/(x sqrt(1-x^(3)))dx=a log|(sqrt(1-x^(3))-1)/(sqrt(1-x^(3)+1))|+b, then a is equal (1)/(3)( b) (2)/(3)(c)-(1)/(3)(d0-(2)/(3)

int(dx)/((x+3)sqrt(x+1))

If int (1)/(x sqrt(1 - x^(3))) " dx = a log" | (sqrt(1- x^(3)) - 1)/(sqrt(1 -x^(3) )+ 1) | + b then a =

int ((1-x)^(3))/(sqrt(x))dx

int(dx)/((sqrt(1-3x)-sqrt(5-3x)))

int x((ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx

int x((ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2))))dx=a sqrt(1+x^(2))ln(x+sqrt(1+x^(2)))+bx