Home
Class 11
MATHS
If A=lim(x->0)sin^(-1)(sinx)/(cos^(-1)(c...

If `A=lim_(x->0)sin^(-1)(sinx)/(cos^(-1)(cosx))` and `B=lim_(x->0)[|x|]/x` then (where [.] denotes greatest integer function)(A) A=1 (B) A does not exist (C) B = 0 (D) B=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=lim_(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim_(x to 0)([|x|])/(x), then

lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

lim_(x rarr1^(-1))([x])^(1-x) where [.] denotes greatest integer function

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.

Solve lim_(xto0)[(sin|x|)/(|x|)] , where [.] denotes greatest integer function.

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

lim_(x rarr1)(1-x+[x-1]+[1-x])= where [.] denotes the greatest integer function