Home
Class 12
MATHS
If the straight line y= x sin alpha + a ...

If the straight line `y= x sin alpha + a sec alpha` is a tangent to the circle ` x^(2) + y^(2) = a^(2) ` then-

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line y= x sin alpha+ a sec alpha be a tangent ot the circle x^(2)+y^(2)=a^(2) , then show that cos^(2)alpha=1

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then

If the straight line y=x sin alpha+a sec alpha be a tangent to the circle then show that cos^(2)alpha=1

If the line y cos alpha=x sin alpha+a cos alpha be a tangtnt to the circle x^(2)+y^(2)=a^(2) then

The line x sin alpha - y cos alpha =a touches the circle x ^(2) +y ^(2) =a ^(2), then,

The line x sin alpha- ycos alpha = a touches the circle x^(2) +y^(2) =a^(2) ,then

If the straight line represented by x cos alpha + y sin alpha = p intersect the circle x^2+y^2=a^2 at the points A and B , then show that the equation of the circle with AB as diameter is (x^2+y^2-a^2)-2p(xcos alpha+y sin alpha-p)=0

If the straight line represented by x cos alpha + y sin alpha = p intersect the circle x^2+y^2=a^2 at the points A and B , then show that the equation of the circle with AB as diameter is (x^2+y^2-a^2)-2p(xcos alpha+y sin alpha-p)=0

Find the condition that the straight line x cos alpha+ y sin alpha=p is a tangent to the : ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1