Home
Class 11
MATHS
lim(x->oo)(1-x+x.e^(1/n))^n...

`lim_(x->oo)(1-x+x.e^(1/n))^n`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)(e^x((2^(x^n))^(1/(e^(x)))-(3^(x^n))^(1/(e^(x)))))/(x^n), n in N, is equal to

consider f(x)=lim_(x-oo)(x^(n)-sin x^(n))/(x^(n)+sin x^(n)) for x>0,x!=1,f(1)=0 then

If lim_(x->1)((x^n-1)/(n(x-1)))^(1/(x-1))=e^p , then p is equal to

The value of lim_(x->oo)((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/(x^n) (where n in N) is (a)logn(2/3) (b) 0 (c) nlogn(2/3) (d) none of defined

The value of lim_(x rarr oo)(x^(n)+nx^(n-1)+1)/(e^(|x|)),n in1 is

The value of lim_(x rarr oo)((2^(x^(n)))^((1)/(e^(x)))-(3^(x^(n)))^((1)/(e^(x))))/(x^(n))

lim_(x rarr oo)((2^(x^(n)))^(e^((1)/(T)))-(3^(x^(n)))^((1)/(e^(bar(T)))))/(x^(n))

The value of lim_(x rarr oo)(x^(n))/(e^(x))

lim_(n rarr oo)(1+(x)/(n))^(n)