Home
Class 11
MATHS
If a >0,b >0 then (lim)(n->oo)((a-1+b^(...

If `a >0,b >0` then `(lim)_(n->oo)((a-1+b^(1/n))/a)^n=` `b^(1//a)` b. `a^(1/b)` c. `a^b` d. `b^a`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If agt0, b gt0 than lim_(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

If 0ltaltb, then lim_(nto oo) (a^(n)+b^(n))/(a^(n)-b^(n))

If 0 lt a lt b, " then " lim_(n to oo) (a^(n)+b^(n))/(a^(n)-b^(n))

lim_ (n rarr oo) ((a-1 + b ^ ((1) / (n))) / (a)) ^ (n)

lim_(n rarr oo)((a^(n+1)+b^(n+1))/(a^(n)-b^(n))), 0 lt a lt b

lim_(n rarr oo)(a^(n)+b^(n))/(a^(n)-b^(n)), where a

Find : lim_( n rarr oo) (2^(1/n - 1 )/ ( 2^(1/n) +1 ) ) (a) 1 (b) 1/2 (c) -1 (d) 0

If a+b=1, then sum_(n=0)^(n)C(n,r)a^(r)b^(n-r) is equal to '

If the expansion in powers of x of the function 1/[(1-ax)(1-bx)] is a a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+..., then a_(n) is (b^(n)-a^(n))/(b-a) b.(a^(n)-b^(n))/(b-a) c.(b^(n+1)-a^(n+1))/(b-a) d.(a^(n+1)-b^(n+1))/(b-a)