Home
Class 11
MATHS
(lim)(xvecpi/2)[1+(cos x)^(cos x)]^2= a...

`(lim)_(xvecpi/2)[1+(cos x)^(cos x)]^2=` a. b. c. d. does not exist

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0) (cos 2x-1)/(cos x-1)

The (lim)_(x->0)(cos x)^(cotx) is -1 b. 1 c. 0 d. none of these

(lim)_(x rarr oo)(sin x)/(x) equals a.1b*0c.oo d . does not exist

If [.] denotes the greatest integer function, then lim(x)/(a)[(b)/(x)](b)/(a) b.0 c.(a)/(b) d.does not exist x rarr0

lim x→(2^+) { x } sin( x−2 ) /( x−2)^2 = (where [.] denotes the fractional part function) a. 0 b. 2 c. 1 d. does not exist

The value of lim_( x -> 0 ) ( 2^(-1/x^2)) is ( a ) 2 ( b ) 1/2 ( c ) 0 ( d ) does not exist

(lim)_(xvec-7)([x]^2+15[x]+56)/("sin"(x+7)"sin"(x+8))= (where [.] denotes the greatest integer function) a. is 0 b. is 1 c. is -1 d. does not exist

lim_(x rarr(pi)/(2))(a^(cot x)-a^(cos x))/(cot x-cos x) is equal to ln a(b)a(c)ln(a)/(2) (d) does not exist

Consider the following graph of the function y=f(x). Which of the following is//are correct? (a) lim_(xto1) f(x) does not exist. (b) lim_(xto2)f(x) does not exist. (c) lim_(xto3) f(x)=3. (d)lim_(xto1.99) f(x) exists.

lim_(x rarr-1)(cos2-cos2x)/(x^(2)-|x|)=