Home
Class 10
MATHS
Prove that : (cos^(2)theta)/(1-tanthet...

Prove that : `(cos^(2)theta)/(1-tantheta)+(sin^(3)theta)/(sintheta-costheta)=1+sinthetacostheta`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (cos^(2)theta)/(1-tantheta)+(sin^(3)theta)/(sintheta-costheta)=K+sinthetacostheta , then K = ?

Prove the following (cos^2theta) /(1-tantheta) +sin^3theta/(sintheta-costheta) =1+sinthetacostheta

Prove the following identities: (cos^2theta)/(1-tantheta)+(sin^3theta)/(sintheta-costheta)=1+sinthetacostheta

Prove (sin^3theta+cos^3theta)/(sintheta+costheta)=1-sinthetacostheta

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

(sintheta+sin2theta)/(1+costheta+cos2theta)

(sintheta+sin2theta)/(1+costheta+cos2theta)

Prove that sin^3theta+cos^3theta=(sintheta+costheta)(1-sinthetacostheta) .

Prove that (sin(90^(@)-theta))/(1-tantheta)+(cos(90^(@)-theta))/(1-cottheta)=costheta+sintheta

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)