Home
Class 11
MATHS
" If "f(a)=2,f'(a)=1g(a)=-1g'(a)=-2," th...

" If "f(a)=2,f'(a)=1g(a)=-1g'(a)=-2," then "lim_(x rarr0)(g(x)f(a)-g(a)f(x))/(x-a)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

f(0)=0=g(0) and f'(0)=6=g'(0)thenlim_(x rarr0)(f(x))/(g(x))=

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

lim_(x rarr0)(3sin(x^(g))-sin(3x^(g)))/(x^(3))=

lim_(x rarr0)(3sin(x^(g))-sin(3x^(g)))/(x^(3))=

If f'(2)=6 and f'(1)=4 ,then lim_(x rarr0)(f(x^(2)+2x+2)-f(2))/(f(1+x-x^(2))-f(1)) is equal to ?

Let f(x) be a quadratic function such that f(0)=f(1)=0&f(2)=1, then lim_(x rarr0)(cos((pi)/(2)cos^(2)x))/(f^(2)(x)) equal to