Home
Class 12
MATHS
lim(n rarr oo)sum(r=1)^(n)(r^(3))/(n^(4)...

lim_(n rarr oo)sum_(r=1)^(n)(r^(3))/(n^(4)+r^(4))

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following is the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(3))/(r^(4)+n^(4))?

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)

{:(" "Lt),(n rarr oo):} sum_(r=1)^(n)((r^(3))/(r^(4)+n^(4)))=

lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

Evaluate :lim_(n rarr oo)sum_(r=1)^(n)(1)/((n^(2)+r^(2))^(1/2))

lim_(n to oo) sum_(r=1)^(n) ((r^(3))/(r^(4) + n^(4))) equals to-

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

lim_(n rarr oo)(sum_(r=1)^(n)r^(1/a)(n^(a-(1)/(a))+r^(a-(1)/(a))))/(n^(a+1))=