Home
Class 12
MATHS
underset( x rarr 0 ) ( "lim")( (1- cos 2...

`underset( x rarr 0 ) ( "lim")( (1- cos 2x) ( 3 + cos x ))/( x tan 4x)` is equal to `:`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0) ((1-cos 2x)(3+cos x))/(x tan 4x) is equal to

lim_(x rarr 0) ((1-cos 2x)(3 + cos x))/(x tan 4 x) is equal to :

lim_(x to 0) ((1-cos 2x)(3+cosx))/(x tan 4x) is equal to

lim_(x rarr 0) ((1-cos 2 x)(3+cos x))/(x tan 4 x) is equal to :

lim_(x rarr0)((1-cos2x)(3+cos x))/(x tan4x) is equal to:

The limit underset( x rarr0 ) ( "lim") ( 1- cos x sqrt( cos 2x) )/( x^(2)) is equal to

underset( x rarr 0 ) ( "Lim") ((x- 1+ cos x )/( x))^((1)/( x))

lim_(x rarr0)((1-cos2x)(3+cos x))/(x tan4x) =

underset(x to 0)"Lt" ((1-cos 2x)(3+cos x))/(x tan 4x )) is equal to