Home
Class 12
MATHS
The functions u=e^(x)sinx,v=e^(x)cosx sa...

The functions `u=e^(x)sinx,v=e^(x)cosx` satisfy the equation

Promotional Banner

Similar Questions

Explore conceptually related problems

The function u=e^(x)sin x,v=e^(x)cos x satisfy the equation (a) v(du)/(dx)-u(du)/(dx)=u^(2)+v^(2)(b)(d^(2)u)/(dx^(2))=2v(c)d^(2)v())/(dx^(2))=-2u(d)(du)/(dx)+(dv)/(dx)=2v

The functions u=e^(x).sinx and v=e^(x).cosx satisfy the equation

The functions u=e^(x).sinx and v=e^(x).cosx satisfy the equation

The function u=e^x sinx ; v=e^x cos x satisfy the equation v(d u)/(dx)-u(d v)/(dx)=u^2+v^2 b. (d^2u)/(dx^2)=2v c. (d^2)/(dx^2)=-2u d. (d u)/(dx)+(d v)/(dx)=2v

The function u=e^x sin x ; v=e^x cos x satisfy the equation a. v(d u)/(dx)-u(d v)/(dx)=u^2+v^2 b. (d^2u)/(dx^2)=2v c. (d^2v)/(dx^2)=-2u d. (d u)/(dx)+(d v)/(dx)=2v

Integrate the functions e^(x)sinx

Integrate the functions e^(x)(sinx+cosx)

Integrate the functions e^(x)(sinx+cosx)

Integrate the functions e^(x)(sinx+cosx)

Integrate the functions e^(x)(sinx+cosx)