Home
Class 12
MATHS
If y=e^(m cos^(-1)x), then (1-x^(2))y(2)...

If `y=e^(m cos^(-1)x)`, then `(1-x^(2))y_(2)-xy_(1)-m^(2)y` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(msin^(-1)x)," then "(1+x^(2))y_(2)-xy_(1)=

If y=sin(m sin^(-1)x), then (1-x^(2))y_(2)-xy_(1) is equal to m^(2)y(b)my(c)-m^(2)y(d) none of these

If y = sin(m sin^(-1)x) , then (1-x^(2))y_(2) - xy_(1) is equal to (Here, y_(n) denotes (d^(n)y)/(dx^(n)) )

If y=cos(m sin^(-1)x), show that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0

If y = e^(sin^ [-1] x), then (1 - x^(2))y_(2) - xy_(1) =

If y = e ^(Sin^(-1)x ) then (1 - x ^(2)) y _(2) - xy_(1) -y=

If y = e^(m cos^(-1) x) (1-x^2)y_2-xy_1 = m^2y

If y = sin(mcos^(-1)x) then prove that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0 .

If y=(cos^(-1)x)^(2) , then the value of (1-x^(2))y_(2)-xy_(1) is -

" 1(a) If "y=e^(a sin^(-1)x)" ,show that "(1-x^(2))y_(2)-xy_(1)-a^(2)y=0