Home
Class 11
PHYSICS
In the equation int(dt)/(sqrt(2at-t^(2))...

In the equation `int(dt)/(sqrt(2at-t^(2)))=a^(x) sin^(-1)[t/a-1]`. The value of `x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

int (dt)/(sqrt(2at - t^(2))) = a^(2) sin ^(-1)[[1)/(a) - 1] The value of x is

If equation int (dt)/(sqrt(3a - 2t^(2))) = a^(x) sin ^(-1) ((r^(2))/(a^(2)) - 1) , the value of x is

(-1)/(2)int(dt)/(sqrt(1-t)sqrt(t))

The solution for x of the equation int_(sqrt(2))^(x)(1)/(tsqrt(t^(2)-1))dt=(pi)/(2) , is

The solution for x of the equation int _(sqrt2) ^(x) (dt)/( tsqrt(t ^(2) -1))= (pi)/(12) is

Find the equation of tangent to y=int_(x^2)^(x^3)(dt)/(sqrt(1+t^2))a tx=1.

Find the equation of tangent to y=int_(x^2)^(x^3)(dt)/(sqrt(1+t^2))a tx=1.

Find the equation of tangent to y=int_(x^2)^(x^3)(dt)/(sqrt(1+t^2))a tx=1.

Cosider the equation int_(0)^(x) (t^(2)-8t+13)dt= x sin (a//x) where x and a are values that satisfy the given equation, is

If int_(1)^(x)(dt)/(|t|sqrt(t^(2)-1))=(pi)/(6) then x can be equal to